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Energy partitioning and impulse dispersion in the decorated, tapered,
strongly nonlinear granular alignment: A system with many potential
applications

Robert L. Doney,1,a� Juan H. Agui,2,b� and Surajit Sen3,c�

1U.S. Army Research Laboratory, Aberdeen Proving Grounds, Maryland 21005, USA
2NASA-Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135, USA
3Department of Physics, State University of New York, Buffalo, New York 14260-1500, USA
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Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem.
An axially aligned set of progressively shrinking elastic spheres, a “tapered chain,” has been shown
to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental
works by several authors. We have recently shown �see R. L. Doney and S. Sen, Phys. Rev. Lett. 97,
155502 �2006�� that the shock absorption ability of a tapered chain can be dramatically enhanced by
placing small interstitial grains between the regular grains in the tapered chain systems. Here we
focus on a detailed study of the problem introduced in the above mentioned letter, present extensive
dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive
attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss
some preliminary experimental results using systems with chrome spheres and small Nitinol
interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered
granular alignment. We are specifically interested in small systems, comprised of several grains.
This is because in real applications, mass and volume occupied must inevitably be minimized. Our
conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much
of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus,
the present study offers insights into how the shock absorption capabilities of these systems can be
pushed even further by improving energy absorption capabilities of the larger grains in the tapered
chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing
components in body armor, armored vehicles, building applications and in perhaps even in
applications in rehabilitation science. © 2009 American Institute of Physics.
�doi:10.1063/1.3190485�

I. INTRODUCTION

There is a recognized need for shock and impulse miti-
gation in a variety of situations. Common examples in the
context of armed conflicts are, for instance, in constructing
vests and vehicle surfaces that may be able to withstand bul-
let impacts and impacts of other more energetic entities.1

Other examples include impact absorption during controlled
explosions, in the context of the aerospace and automobile
industries, in protecting structures against seismic shocks
and other impacts,2 in protecting the walls of space crafts
from small but fast moving objects in space,3 and in areas
such as in rehabilitation science and technology where cush-
ioning the process of transporting critically injured patients
may be necessary and perhaps can be aided by the use of
granular chain shock absorbers in the legs.4

Here we build on our earlier work5–11 to develop the
broader physics and nonlinear dynamics issues associated
with the so-called tapered granular chains, which can serve
as key constituents in systems designed for impulse disper-
sion. It may be noted here that shock absorption capability in

the context of armor applications is sometimes captured us-
ing “specific absorbed energy” �in units of J/g� or by “gravi-
metric absorbed energy” �in units of J /cm3� defined as the
difference between the incident kinetic energy on a system
and kinetic energy that is transmitted through the system
divided by the system mass �for specific absorbed energy� or
volume �for gravimetric absorbed energy� �see, for instance,
Refs. 12 and 13�. In an earlier report we have estimated the
projected specific absorbed energy of a plate with embedded
tapered chains �TCs� made using titanium-aluminum-
vanadium alloys if one were to be constructed. Our estimates
suggest that the specific absorbed energy is likely to be in the
window of 100–102 J /g, which would be in the range where
several competitive shock absorption technologies would
currently find themselves in Ref. 14.

An impulse that is incident on some surface can be char-
acterized by the energy it carries and the duration it lasts. In
this work we shall consider impulses that have short enough
durations such that they can be characterized by �-function
events. Studies show that impact events that last sufficiently
long can lead to unexpected breathing-type dynamics in
granular chains.15,16 Such cases will be addressed separately.
The energies of interest are assumed to be such that the im-
pulse can propagate through a set of metallic grains without
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significantly deforming them so much that they can soften,
melt, and/or crack. If we assume that the grains are metallic,
this means that we are talking about impulses that are much
less than some 103 m /s, the latter being the typical sound
speed inside a metal. Thus, we shall stay away from consid-
ering the direct consequences of typical impulses associated
with bullets and projectiles, although indirect impulses
caused by such objects may be addressed by the systems we
devote this work to. This is not to say that our systems can-
not be applied for such large scale impulse mitigation at all
but rather that we are not yet in a position to reliably model
such impacts on our systems. We have indeed studied the
dynamics of our systems at impulses approaching speeds
�750 m /s and preliminary analyses using state of the art
hydrocodes17 indicate that deformations notwithstanding,
such impacts may be sustained by our systems.9 In this work,
we interchangeably refer to shocks and impulses, ignoring
formal definitions. Since we use a particularly hard and
strong material we typically use impact speeds of �10 m /s.
This is somewhat higher than the often used several m/s
speeds when using steel balls �see, for example, Ref. 18�.
Details of the impact speed aside, the crucial point to note is
that we assume that for our material of interest the elastic
deformation of the grain due to the collision is small enough
such that the Hertz law is respected. Indeed it has been ob-
served that for certain materials Hertz theory works surpris-
ingly well up to unexpectedly large impact speeds.19

A. The tapered chain and its dynamics

We present here a shock absorbing, one-dimensional
�1D� dynamical system5,7,8 consisting of axially aligned elas-
tic spheres of progressively smaller radii—or a TC. Let us
call this system a simple TC �STC�. This system is typically
assumed to be comprised of metallic grains and disperses
incident impulses by spreading them out in time and space
through inertial mismatches between the nearest neighbors.
The effect was validated experimentally by Nakagawa et al.6

and by Melo et al.10 However, such STCs have limited en-
ergy dispersion capability when the number of grains is
small �say �15�. Herein we report overcoming that chal-
lenge by introducing smaller beads of constant radius be-
tween the grains. These systems, now referred to as deco-
rated TCs �DTCs�, represent a significant improvement and
turn out to be strongly nonlinear in their dynamical response
to impulses.11 We discuss the results of a preliminary experi-
mental study which confirms that the DTCs are capable of
breaking down impulses more efficiently than a STC.

To model such systems, a potential is chosen which
emulates an elastic compression—namely, the Hertz
potential.20,21 This strongly, nonlinear function is purely re-
pulsive and is initially softer than a harmonic or Hookean
term as two adjacent grains begin to get squeezed. However
the potential builds up nonlinearly with progressive compres-
sion. The nature of this growth in the potential as the grain-
grain distance decreases is measured via the overlap param-
eter �i,i+1, where i and i+1 denote any two adjacent grains
and �i,i+1 equals the difference between the centers of the
adjacent grains when they are squeezed and are barely

touching.20 Thus, overlap is a positive definite quantity. In
the absence of contact, �i,i+1=0. The nonlinear growth of the
Hertz potential in terms of �i,i+1 is sensitive to the nature of
the interface associated with the grain-grain contact.20 For
contacts between spheres, the potential grows as �i,i+1

5/2 .
When the grains are all the same size, or monodispersed,

any impulse imparted at one end develops into a propagating
solitary wave �SW�. This has been demonstrated experimen-
tally, numerically, and analytically.22–31 An approximate ana-
lytic estimate of the SW width, ws, placed its value at five
grain diameters.22,28 Subsequent numerical studies reported it
to be closer to seven.16 When the particles shrink in size by a
constant factor, or are polydispersed, a SW cannot form due
to translational symmetry breaking at every grain-grain
contact.46 The more massive particle conveys a part of its
kinetic energy to the smaller neighbor, which moves faster
but carries less kinetic energy. In this manner, tapering al-
lows for progressive breakdown of an impulse and this is
what we mean by impulse dispersion in these TC systems.5

Thus, STCs can be classified as shock dispersion systems or
shock “absorbers.” The efficiency of these shock absorbers
can be shown to increase exponentially with the number of
particles, N, and sigmoidally with tapering, q. Their proper-
ties have been studied in detail, first numerically,5,8 then ap-
proximately analytically,5,8 and then experimentally.6,10 Im-
pulse decimation can also be accomplished by tuning
material properties as elucidated by Hong.32 In fact, this was
reported experimentally by Daraio et al.,33 Fraternali et al.,34

and Carretero-Gonzlez et al.35 The dynamics of short chains,
N�10, have not yet been investigated thoroughly.

These 1D systems have diverse, scalable, and tunable
properties. By analyzing the energy transport mechanism, the
“ensemble” of systems can be loosely categorized into three
groups: SW bearing systems, shock absorption systems, and
strongly oscillating systems, where the distinctions are
drawn based on how total system energy ends up being par-
titioned. An intriguing question can be asked: How does the
system respond when N�ws or N�ws? These are conditions
where the group energy transport mechanism has been inter-
rupted by the boundaries. The boundary, a wall, or sphere of
infinite radius obeys a slightly altered potential than that be-
tween neighboring grains. Results suggest that with the
proper mix of q and N�ws, one obtains quasiperiodic and,
possibly, nonlinear modal behavior.

B. Interstitials grains and the decorated tapered
chain

An analysis of STCs clearly demonstrated that the best
energy dispersion occurs for highly TCs where there are a
large number of spheres.5 Unfortunately, large values of N
may not be realizable for many applications where space is at
a premium. The natural scalability may be used to drive the
system to smaller sizes, but manufacturing issues may be-
come restrictive.36 Moreover while precompressing the chain
can further increase the amount of absorption,7 that condition
needs to be externally maintained throughout the dynamics.
Additionally, this pressurized container may pose a safety
risk under certain circumstances. How does one then apply
short TCs where substantial energy mitigation is needed?
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Larger and more frequent inertial mismatches lead to
better momentum traps and energy dispersion �see Fig. 1�.
We therefore proposed a TC system in which we place inter-
stitial grains at the particle contacts of a STC.11 We refer to
this as the DTC �examples shown in detail later in Fig. 2�.

As we shall see, the TC systems represent an alternative
to current passive technologies of dealing with undesirable
transients, such as ballistic shock or strong impacts. One
such technology uses metal foams and honeycombs.37,38

When honeycombs are extruded, one obtains a linear cellular
alloy,39 which promises significant energy absorption
capabilities.37 Another approach to impulse dissipation is
through the use of functionally graded materials40 where one
can introduce impedance mismatches gradually or discon-
tinuously. What TCs offer as an improvement to currently
available technologies is an inherent scalability, the potential
for improved performance because of the large parameter
space associated with materials used, and a modest if not low
cost.36

The paper is organized as follows. In Sec. II, a math-
ematical description of the problem is presented. Hard sphere
approximations for both systems follow in Sec. III. Section
IV outlines the numerical approach and results for the deco-
rated chain. Section V follows with an analysis of energy
partitioning for the two systems and Sec. VI presents pre-
liminary experimental results to establish that our simula-
tional work is qualitatively consistent with the experiments.

We close in Sec. VII with a summary of the work presented
here and remarks about the challenges that lie ahead in con-
structing systems with embedded TC shock dispersion sys-
tems.

II. PROBLEM SETUP

Figure 1 illustrates an example STC �upper panel� and
DTC �lower panel�. Such chains are parametrized by the
number of particles, N, and the amount of tapering, q. The
DTC is a STC where an additional particle has been inserted
at each particle-particle contact. The particle-boundary inter-
face is unchanged. If the smallest noninterstitial particle at an
edge in a DTC has radius, RN, the interstitial grain is defined
as having radius, fRN. We take the interstitial particle as
small �f �1� for energy absorption applications. The rela-
tion, fRN, was chosen for convenience for deriving the hard-
sphere approximation below. The DTC therefore has the ad-
ditional parameter f , and has odd N. From this point on, q
appears in both STCs and DTCs but is defined differently.
For the STC, bead radii are given as

Ri+1/Ri = 1 − qs � �s, �1�

while for the DTC it is

Ri+2/Ri = 1 − qd. �2�

As such they are denoted as qs and qd, respectively. Figure 2
gives a sense of the wide variety of DTC systems possible
given f , qd, and N. It is immediately clear that the inertial
mismatch changes as a function of position along the
DTC—a dynamic not present for the STC.8 It is possible
then to have decorated chains that appear monodispersed for
only a part of the chain �left side of chain in Fig. 2�a� for
example�.

III. HARD SPHERE APPROXIMATIONS

A. STC

We can quantify the shock absorption efficiency of such
chains by measuring the normalized kinetic energy, Knorm

�Kout /Kin, where Kin is the initial impulse energy delivered
by the first sphere and Kout is the kinetic energy felt by the
last sphere due to the first wave front �reflections are ne-
glected�. A study assuming that the grain-grain interactions
are infinitely stiff �i.e., in the hard-sphere limit�8 can be car-
ried out to develop an expression for the kinetic energy of
the last grain in the STC. In this limit, one can use the energy
and linear momentum conservation laws at each grain-grain
interaction. The calculation for the STC case has been car-
ried out in earlier work.8 The momentum and energy conser-
vation conditions can be written as

vi = vi� + �s
3vi+1� �3�

and

vi
2 = vi�

2 + �s
3vi+1�2 , �4�

respectively, and yield vi+1� /vi=2 / �1+�s
3�. This result can be

now used to derive the final result below,

STC: N=11, q=5%

DTC: N=11, q=5%, f=0.8

FIG. 1. An example STC and DTC.

(a) f = 1; q
d
= 0.1

N=13

(b) f = 1; q
d
= 0

(c) f = 0.7; q
d
= 0.1 (d) f = 0.7; q

d
= 0

(e) f = 0.3; q
d
= 0.1 (f) f = 0.3; q

d
= 0

FIG. 2. Variety of DTCs possible by varying f and q for constant N=13.
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Knorm
�STC� = � 4�1 − qs�3

�1 + �1 − qs�3�2�N−1

. �5�

This function is plotted in Fig. 3�a� �top surface�. The lower
surface is obtained from numerical calculations. Comparison
of upper and lower surfaces in Fig. 3�a� reveal that the quali-
tative characteristics of how Knorm

�STC� behaves as functions of N
and q obtained via the hard-sphere approximation and dy-
namical simulations are quite close, i.e., Knorm

�STC� decays expo-
nentially with N and sigmoidally with q in both. The magni-
tude of Knorm

�STC� differs between the two �Fig. 3�d�. It turns out
that this difference is because in the hard-sphere approxima-
tion treatment, the contribution of the potential energy is set
to zero and all the energy is regarded as kinetic. In a real
system, some 44.5% of the total energy is potential
energy.7,41,42 Thus the magnitude of the kinetic energy that is
transported through the system is much less. Once the value
of Knorm

�STC� in the hard-sphere calculations is multiplied by
0.555, the agreement between the two studies improves sig-
nificantly as long as we restrict ourselves to sufficiently long
and TCs. The departure between the results obtained through
the two approaches are largest for chains that are sufficiently
small and are not appropriately tapered. We shall later see
that this departure arises from the nonlinear effects associ-
ated with the Hertz potential.43 We shall return to a discus-
sion of these issues in Sec. IV. As we shall see in this work,
such a simple minded “renormalization” does not bring the
hard-sphere based and dynamical simulation based analyses
into close agreement for the DTC case. Moreover this is why
we must regard the dynamics of the DTC as intrinsically
nonlinear in nature where the potential energy of the grains
plays a rich role in its dynamics.

B. DTC

In deriving an approximation for the DTC, the process is
more cumbersome and the conservation equations for mass
and energy are successively applied to obtain the grain ve-
locities until a pattern emerges. Our primary interest is in
deriving an expression for the normalized kinetic energy,

Knorm =
Kout

Kin
=

mN

m1
�vN�

v1
�2

=
mN

m1
	� vN�

vN−1�
�¯ �vi+2�

vi+1�
�

��vi+1�

vi�
�¯ �v2�

v1
�
2

. �6�

We will eventually look for forms of vi+1� /vi and then gener-
alize for N particles or �N−1� collisions. First, the relation-
ship among masses and radii must be evaluated. Assembling
the radii, we have starting with the largest bead,

ri,

ri+1 = frN,

ri+2 = ri − qri = �1 − q�ri = �ri,

ri+3 = frN,

ri+4 = ri+2 − qri+2 = �1 − q�ri+2 = �2ri,

ri+5 = frN,

ri+6 = ri+4 − qri+4 = �1 − q�ri+4 = �3ri,

]

rN−1 = frN,

rN = rN−2 − qrN−2 = �1 − q�rN−2 = ��N−1�/2ri.

The main equations for radii are therefore

rN = ��N−1�/2ri,

r�i+1�,�i+3�,. . .,�N−1� = f��N−1�/2ri. �7�

Recall for masses that mi=�Vi=
4
3�ri

3�=�ri
3. Note that since

� is just a constant and will cancel once the conservation
equations are set into use, we will ignore it from now on.
Expressions for mi then become

mi � �0ri
3,

0
0.05

0.1
10

20

0

0.2

0.4

0.6

0.8

1

q
s

(a) Hard spheres (top); Numerical (bottom)

N

K
N

o
rm

0

0.05

0.1

5
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15
20

0.5

0.6

0.7

0.8

q
s

(d) Difference

N

K
N

o
rm

(b) Monodisperse Chain: q
s
=0, N=10

(c) Tapered Chain: q
s
=0.1, N=10

FIG. 3. �Color online� �a� Hard sphere approximation and numerically solved normalized kinetic energy surfaces, Knorm�Kout /Kin, for the STC as functions
of the number of spheres, N, and tapering, qs. Their difference is plotted in panel �d� with a reduced z-axis. Sample TCs are identified in panels �b� and �c�.
Reproduced from Fig. 1 in R. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 �2006�. Copyright © 2006 by the American Physical Society �Ref. 11�.
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mi+1 � ri+1
3 = Ari

3,

mi+2 � �3ri
3,

mi+3 � ri+3
3 = Ari

3,

mi+4 � �6ri
3,

]

mN−1 � rN−1
3 = Ari

3,

mN � �3�N−1�/2ri
3, �8�

where A= f3�3�N−1�/2. We may now use these relations to set
up the conservation equations. Beginning with momentum
and assuming that each subsequent particle in the chain be-
gins at rest, we solve for the first five collisions. Primes and
double primes indicate postcollision states. A primed quan-
tity denotes the first postcollision state of a sphere. That sub-
sequent sphere will serve as the input to the next collision.
To keep track of its velocity after the second collision, it is
denoted by a double prime and will eventually be eliminated.
With �= �1−q�, we obtain

mivi = mivi� + mi+1vi+1� → vi = vi� + Avi+1� , �9�

mi+1vi+1� = mi+1vi+1� + mi+2vi+2� → Avi+1� = Avi+1� + �3vi+2� ,

�10�

mi+2vi+2� = mi+2vi+2� + mi+3vi+3� → �3vi+2� = �3vi+2� + Avi+3� ,

�11�

mi+3vi+3� = mi+3vi+3� + mi+4vi+4� → Avi+3� = Avi+3� + �6vi+4� ,

�12�

mi+4vi+4� = mi+4vi+4� + mi+5vi+5� → �6vi+4� = �6vi+4� + Avi+5� ,

] �13�

From the pattern in Eqs. �9�–�13�, Eq. �9� can be rewritten as
�0vi�=�0vi�+Avi+1� . An evaluation of energy conservation
yields the same form as Eqs. �9�–�13� except velocities are
squared,

vi
2 = vi�

2 + Avi+1�2 , �14�

Avi+1�2 = Avi+1�2 + �3vi+2�2 , �15�

�3vi+2�2 = �3vi+2�2 + Avi+3�2 , �16�

Avi+3�2 = Avi+3�2 + �6vi+4�2 , �17�

�6vi+4�2 = �6vi+4�2 + Avi+5�2 ,

] �18�

We can combine Eqs. �9�–�18� to eliminate the double-
primed terms and form the velocity ratios: vi+1� /vi, vi+2� /vi+1� ,
etc. Beginning with Eq. �9�, we isolate vi� and square to

obtain vi�
2=vi

2−2Avivi+1� +a2vi+1�2 . Next substitute this into
Eq. �14� and rearrange to obtain vi+1� /vi. This is then repeated
for Eqs. �10�, �15�, �11�, and �16� to obtain the following
ratios:

vi+1�

vi
=

2�0

A + �0 , �19�

vi+2�

vi+1�
=

2A

�3 + A
, �20�

vi+3�

vi+2
=

2�3

A + �3 , �21�

vi+4�

vi+3�
=

2A

�6 + A
,

] �22�

where hindsight has allowed us to insert terms of �0 in Eq.
�19�. With our eye fixed on Eq. �6�, results may be merged.
Thus

vN�

v1
= �v2�

v1
�¯ �vi+1�

vi
��vi+2�

vi+1�
�¯ � vN�

vN−1�
� , �23�

�24�

The ratio can be placed into closed form to obtain

�
vN�

v1
= �

j=1

�N−1�/2 � 2�3�j−1�

A + �3�j−1��� 2A

�3j + A
� ,

=2N−1A�N−1�/2 �
j=1

�N−1�/2 � �3�j−1�

A + �3�j−1��� 1

�3j + A
� . �25�

Turning to the mass ratios and using expressions from Eq.
�8�, it turns out that most terms cancel,

mN

m1
= �m2

m1
�¯ �mi+1

mi
��mi+2

mi+1
�¯ � mN

mN−1
� ,

=� A

�0�� �3

A
�� A

�3�� �6

A
�¯ ,

leading to the simple expression

mN

m1
= �3�N−1�/2. �26�

We can now identify the normalized kinetic energy in
Eq. �6� by squaring Eq. �25� and combining it with Eq. �26�
to form
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Knorm
�DTC� = �4A�3/2��N−1�	 �

j=1

�N−1�/2
�3�j−1�

�A + �3�j−1����3j + A�
2

.

�27�

These results are plotted in Fig. 4. The effects of the inter-
stitial sphere are remarkable when compared to the STCs in
Fig. 3�a� �top surface�. For a modest value, f =0.7, it takes
very few particles to reduce the outgoing kinetic energy con-
siderably.

It is difficult to draw any physical intuition from Eq.
�27�. However, a very curious and astonishing result occurs
in the limit qd=0,

Knorm
�DTC��qd=0 = � 4f3

�f3 + 1�2�N−1

. �28�

This limit is equivalent to Eq. �5� under the exchange
f ⇔ �1−qs�.

As a result, Knorm decays as a half Gaussian or sigmoid
with increasing f , and exponentially with increasing N. It is
clear that f =1 should imply qs=0 since they both generate
monodisperse chains. That this equivalency goes beyond that
special case is quite unexpected. One can now begin to see
the significant effect f has on the energy mitigation capabil-
ity when an infinite potential is invoked: For f =0.3—a typi-
cal value we might consider—the equivalent tapering in the
STC would be qs=0.7. This value is seven times larger than
any system we had previously considered and could be a
significant system integration challenge. For hard spheres,
the energy mitigation capability of the STC shown in Fig. 1
�top� �but qs=1%� is identical to that for a decorated chain
similar to that shown in Fig. 1 �bottom� but with qd=0, N
=10, f =0.9.

IV. NUMERICAL SOLUTION

The spheres can be assumed to interact through the
strongly nonlinear Hertz potential,20,21

V��i,i+1� =
2

5D
RiRi+1/�Ri + Ri+1��i,i+1

5/2 � ai,i+1�i,i+1
5/2 , �29�

where �i,i+1=Ri+Ri+1− �zi+1−zi� represents the overlap of
successive grains and zj is the absolute position of a grain.
The constant D�3 /2��1−�2� /E�, where E and � describe
Young’s modulus and Poisson’s ratio of the material, respec-
tively. We have used the material properties of Ti6Al4V for
our studies and for this material Young’s modulus, E
=114 kN /mm2, and Poisson ratio, �=0.33. In addition, for
each chain, an initial velocity of 0.01 mm /	s �10 m/s� is
applied to the largest grain.44 Our numerical approach uses
the velocity-Verlet45 algorithm with a time step of 10 ps in-
tegrated over 108 steps. Energy is conserved to about one
part in 1012. Results will primarily focus on the evaluation of
Knorm surfaces �Fig. 3�a��. Restitutive losses are accounted
for in the code, however they are excluded in this study.
Therefore, since these particulate systems will have several
modes of energy dissipation—friction, rolling, slipping,
sound, etc., which are simply additive �because work-energy
theorem implies that work done by a system in overcoming
dissipation necessarily implies kinetic energy loss�, these
surfaces must represent the worst cases.

It is known that among other constraints, the Hertz po-
tential is valid when impulse speeds are sufficiently less than
the sound speed of the material. As mentioned earlier, we
have begun hydrocode simulations exploring impact veloci-
ties close to 1 km/s, which suggest continued energy absorp-
tion well beyond 10 m/s.17

The equations of motion for the granular chain where the
grain sizes and masses can vary are then given as

miz̈i = 5
2 �ai−1,i�i−1,i

3/2 − ai,i+1�i,i+1
3/2 � , �30�

and this general equation has no known analytic solution.
Figure 3 plots the hard-sphere �top surface� and numeri-

cal �bottom surface� results for the STC. The reason for the
discrepancy between the two solutions is, of course, due to
the potential energy part of the total energy which has been
ignored in the hard-sphere analyses. For hard spheres, the
sequence consists of independent collisions46 where the ve-
locity ratio is vi+1 /vi=2 / �1+ �1−qs�3�. Since the potential is
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�2006�. Copyright © 2006 by the American Physical Society �Ref. 11�.
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infinite, energy and momentum are transferred instanta-
neously. Further, the hard spheres are not confined and mo-
mentum always carries them forward after interacting �pre-
suming qs�0�. Numerically, rebounding occurs. Even if qs

=0—i.e., inertial matching—the natural partitioning of en-
ergy seen numerically is not accounted for by the approxi-
mation. Thus, for hard spheres, all of the energy is kinetic as
compared to about 55.5% when the numerical-based analysis
is performed. These differences are plotted directly in Fig.
3�d�.

Figure 5 highlights the computational results for the
decorated chain. Recall that the inertial mismatch between
neighboring grains in decorated chains change as a function
of position along the chain. This is what we believe to be the
cause of a ripple in the surface of the Knorm plots that propa-
gate toward the origin as f decreases. As one might expect,
such behavior would be functions of N ,qd, and f . The effect
vanishes for f 
0.6, approximately. At about this threshold,
the interstitial grain is not much smaller �less massive� than
the grains toward the end of the chain. The explanation is
that as an impulse propagates, energy transmission becomes
increasingly efficient due to smaller inertial mismatches—a
prerequisite for admitting SWs. Thus the system changes
from a shock absorber to shock transmitter. This effect how-
ever must compete with compressive effects in some manner
since no such behavior is present for hard spheres even
though it too has a position-dependent inertial mismatch.

The hard-sphere approximation grossly exaggerates the
shock mitigation capability of the decorated chain. Addition-
ally, it does not pick up the surface feature resulting from a
competition between particle overlap nonlinearity and vari-
able inertial mismatches between neighboring grains. Simu-
lations suggest that for f =0.3, N=5, qd=0.1, one can dis-
perse energy within the chain such that only about 10% of

that set into the system is transmitted to the end with the
initial pulse. At later times, dissipation sufficiently attenuates
the pulse such that only the first trip of the energy from the
largest to the smallest grain matters most.

V. ENERGY PARTITIONING

Tracking the partitioning of energy in a many body dy-
namical system is an effective way to develop insights into
its dynamics. For instance, it provides a measure of how
much of the system is in motion versus how much is
squeezed and how these change in time. Energy information
about the whole TC system can be evaluated by summing the
kinetic and potential contributions of each bead and allows
us to check the accuracy of our calculations. In all cases, we
have seen that energy sharing among particles is rapid and
remains nonlocalized in the TCs. Here attention is paid to the
energetic response of the system �Sec. V A� with some con-
sideration to individual particle velocities �Sec. V B�.

A. STC

Energy partitioning in the STC is displayed as 12 sub-
plots in Fig. 6, where each plot element represents a chain
with N=3,8 ,14,20, qs=0,0.05,0.1 for each case of N as
labeled in Fig. 6. For clarity, only the first fifth of simulation
time is shown. Thereafter the initial pulse is broken down
into smaller, disordered pulses. Many interesting features,
visible in the plots, can be discussed qualitatively and sug-
gest the three energy regimes ascribed earlier, the most no-
table of which include frequent and nearly complete energy
conversion for small N; organized energy transmission for
small qs, large N; and noisy, disordered behavior for large qs,
large N.
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spheres, N, fractional size of interstitial sphere, f , and tapering, qd. Several sample chains are identified in panels �d�–�i�.

064905-7 Doney, Agui, and Sen J. Appl. Phys. 106, 064905 �2009�

Downloaded 18 Sep 2009 to 128.63.93.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



The simplest case to consider is that of Fig. 6�d� as it has
been studied before7 and represents a monodisperse chain of
20 grains. It is clear in this instance that energy is partitioned
into 55%–56% kinetic and 45%–44% potential. An inspec-
tion of grain speeds reveal that the first several particles re-
tain some residual velocity before a SW can form—which
also holds true for every plot in the figure �see Fig. 7�a� for
example�.

Holding N=14 fixed and increasing qs results in faster
moving particles as one moves down the chain as well as
wave broadening. This is visible in panels �g�, �h�, �k�, and
�l� as an increasing ramp whose slope is steeper with increas-
ing qs and smoothening of the sinusoidal modulations, re-
spectively. Compare this with the wave broadening among
multiple grains with increasing qs seen in Fig. 7. Interaction
with the boundary follows and in some cases, the energy
envelope increases because most particles have already re-
versed direction. Close inspection reveals that trailing par-
ticles can catch up and kick leading particles into higher
energy states. In panels �k� and �l� rapid oscillations, or ther-
malization, are visible. This is an indication of increasing
“randomness”47,48 of motion and spreading of the energy in
time and space—a prerequisite for impulse decimation.

As one moves to shorter chains, where the SW width
ws�N like those in panels �a�, �e�, and �i�, nearly complete
conversion of energy frequently takes place. Wave reflection
therefore has begun before full transmission of the incident
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pulse would normally reach the boundary of a longer chain.
Consequently they become “dilated” and large parts of the
system can move in phase. Increasing qs for N=3 appears to
enhance the energy conversion efficiency. In fact, panel �b� is
particularly compelling given its quasiperiodicity. Amplitude
of the intermediate weak peaks vary based on qs and repre-
sent energy transfer through the center bead. This behavior
throughout the simulation suggests the possibility of nonlin-
ear modes.49 Consequently, such TCs are not useful for
shock absorption since coordinated movement could amplify
delivered force. Thus, there may be limitations to the reduc-
tion that may be possible in the number of grains needed to
ensure that a TC is capable of impulse dispersion.

Additionally, one can take a mesoscopic view and inves-
tigate how STC systems break down the energy per grain.
This is illustrated in Fig. 7 where the instantaneous kinetic
energy is plotted per grain for N=15, t=52 	s, and a selec-
tion of tapering values and the incident impulse moves from
right to left. In other words, the grain numbers define the
energy carried by grains at a fixed instant in time. Panel �a�
represents the monodisperse chain and the localization of
energy is apparent as the SW is constructed. Recall that it
takes between 10 and 15 grains for SWs to be established.
Even for inertially matched spheres, some residual energy is
left at the head of the chain �right-hand side�. Panels �b� and
�c� again illustrate the effect of tapering which spreads the
energy out among grains. For the latter, the distribution be-
fore interacting with a boundary appears geometric. It is
clear that a SW cannot exist in such chains.

B. DTC

A simple view of energy partitioning in the DTC is not
possible given the vast number of possible chain configura-
tions, belittling those of the STC. Changing N has a much
more severe impact on the results because, by design, it af-
fects the results everywhere in the chain. For example, if we
take the mass ratio of interstitial grains for N=21 and N
=11 chains, with qd and f identical, the results scale aston-
ishingly: mN=21 /mN=11� �1−qd�15! For large tapering, qd

=0.1, interstitial grains in a chain with N=21 have about
one-fifth the mass as their counterparts where N=11.

Rather than focusing on the dynamics of the entire sys-
tem, we focus on how a DTC partitions the energy among
particles as an impulse propagates. Our studies suggest that
controlled partitioning of energy offers very good ways to
absorb and disperse the energy of an impulse.32,33 Figure 8
illustrates the instantaneous kinetic energy per grain for vari-
ous configurations at t=72 	s, where qd= �0,0.05,0.1� and
f = �1.0,0.7,0.3� �see the figure labels�. The black disk that is
visible in the inset indicates the current time for the bins. At
this chosen instant, the pulse is just about to hit the end wall
and turn around—specifically for qd=0.1. Also included in
each panel is a silhouette of the specific chain and the total
kinetic energy of the system as a function of time where the
pulse is initially moving from right to left. It should be noted
that panel �a� is identical to Fig. 7�a�—at different times—
since they are both monodisperse chains. A cursory glance of
all panels reveal that the effect of qd is to spread the impulse
out over many grains in a manner similar to the STC. Sec-
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FIG. 8. �Color online� Instantaneous kinetic energy per grain for various DTC configurations at t=72 	s, where qd= �0,0.05,0.1� and f = �1.0,0.7,0.3�.
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ond, and somewhat surprisingly, when decreasing f the en-
ergy appears to be preferentially distributed to the larger,
noninterstitial �odd numbered� grains. Hence, in these
strongly nonlinear systems, there is no guarantee that a
“plasma mode” would be sustainable in the light masses.50 It
is hypothesized that additional, neighboring interstitial
spheres would further separate the energy along the chain.
What this also appears to do is turn the DTC into, effectively,
a binary collision system since the amplitudes of interstitial
spheres are quite superficial. It may be of interest to note that
the speed of energy transmission appears more strongly de-
pendent on qd than on f , a property that is evident from Fig.
8. This was an unexpected result to us as we had naively
expected that the interstitial grains would perhaps trap en-
ergy better than the larger grains of the TC part of the system
would.

The division of energy into the larger grains for small f
appears to be a result of their larger masses, rather than the
increased “rattling” of interstitial spheres. For example, the
mass ratio between grains 15 and 14 in Fig. 8, panel �i� is
about 0.004. This value becomes more matched as one ap-
proaches grains 1 and 2 which has a ratio of about 0.03.
Even though the even-numbered grains have a much higher
velocity than their larger neighbors, kinetic energy only
scales as v2 versus m�r3. The smaller system kinetic energy
plots in each panel reveals the complicated nature of the
system—a consequence of the competition among f ,qd ,N.
The dynamics tend to be smoother for small f because of the
apparently minor role played by interstitial spheres to the
total system energy. When f is sufficiently small, much
smaller than the smallest f we have considered here �f
=0.3�, it is possible that the elastic assumption would be-
come invalid and the plasticity of the smaller interstitial
grains would become significant. At this time, there is no
simple way to carry out such analysis.

Figure 8 panels �b� and �c�, which pertain to qd=0 and
hence monodispersed chain of larger grains, may not neces-
sarily admit SWs but localized energy propagation does oc-
cur in these systems, thus raising the possibility of using
interstitials to make multiple propagating SWs. The forma-
tion of multiple SWs could arise from extended loading
times between the interstitial and the larger grains for suffi-
ciently small f �in this context, see Refs. 16 and 51�. In both
cases, the amplitude dampens, in agreement with Manciu
and co-workers28,52—this is more obvious with larger N �not
pictured�. Panels �f� and �i� quickly spread out the energy
because of the finite tapering which is also the reason for an
increasing KE ramp �shown in the inset�. However, tapering
qd now must compete with f as results vary significantly
among other panels. A thorough analysis of that rivalry has
not yet been investigated.

VI. EXPERIMENTAL SETUP AND RESULTS

A picture of the experimental setup is shown in Fig. 9. A
stainless steel V-grooved rail was used to align and retain the
granular alignment in contact with the face of the load cell.
The V-groove surface was ground to reduce friction on the
spherical particles and minimize instantaneous rolling of the

initially static particles �for a discussion of rolling related
issues, see Ref. 6�. The spherical particles were chrome steel
ball bearings. A simple pendulum impacting mechanism was
devised to generate a reproducible impact force and subse-
quently numerous tests were performed on the impactor to
show that it produced a repeatable impact force. The stan-
dard deviation in force measurements was less than 1%. The
data were recorded on a 16 bit data acquisition package with
a 75 dB signal to noise ratio. The force measurement was
registered by a 1000 lb compression load cell with a natural
resonant frequency of 35 KHz. We used two setups for the
studies. The first was a STC in which all particles were in
contact along the chain. Both N=5 and N=6 were used in
this configuration. The first and largest particle in the chain
had a diameter of 10 mm and the tapering for the subsequent
balls was about 51%. The second was the DTC setup. In
this case, small Nitinol 2.38 mm diameter particles were in-
troduced between the main STC particles so that NDTC=9.53

The difference in chain length between the latter and the
STC N=6 was only about 2 mm. Placement was crucial for
stability of the chain and for the force transmission to take
place through the grains. Any collapse of the chain would
have significantly altered the force measurement. A close-up
of the Nitinol particle placement is shown in Fig. 10. Kevlar
thread was glued to two opposing sides of the interstitial
particles for anchoring it to the rail using tape. These threads
are visible in the image extending into and out of the page. In

FIG. 9. �Color online� V-groove apparatus with pendulum for the STC
experiments.

FIG. 10. DTC apparatus showing Kevlar thread glued to the interstitial
particles.

064905-10 Doney, Agui, and Sen J. Appl. Phys. 106, 064905 �2009�

Downloaded 18 Sep 2009 to 128.63.93.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



the background, one can discern the threads taped to the rail.
Time was spent properly aligning the Nitinol particles along
the center axis of the chain. High speed video was taken
during each run to ensure that the data correlated with a
stable chain during impact propagation. The video was re-
corded on a Photron camera at 1000�1000 pixel resolution
at 1000 frames/s. Runs with collapsed chains were not con-
sidered in the reduced data.

We performed ten test runs each between the STC and
DTC setups. A plot comparing typical impact forces among
the five and six particle STCs and the nine particle DTC is
presented in Fig. 11. Impact forces reached close to 200 N.
These plots are quantitatively representative of the remaining
plots from each of the other test runs. Notice the slight de-
crease in force for the six particle STC versus the five par-
ticle STC. The additional particle and tapered differences
added 7.36 mm to the length of the chain and an additional
contact and a mass increase of 11.9%. In comparison, the
DTC produced a 25% attenuation in force. Because of the
four interstitial Nitinol particles the contacts went up by 4
and the chain length was increased by 9.5 mm, but with only
a 1.4% increase in mass. The signal for the DTC shows a
more pronounced drop but characteristic in decay as the STC
cases. This seems to indicate that for stable chains the re-
bound was immediate with no sideway motion, at least dur-
ing the forward impulse direction. For close comparison with
simulations it would have been desirable to directly measure
grain velocities. However, such measurements are very dif-
ficult to perform with reasonable accuracy in these systems
at this time.

It is almost impossible to quantitatively compare the ex-
perimental results on force measurements with simulations in
this strongly nonlinear system of Hertz contacts. Some of the
challenges associated with modeling are as follows: �i� little
is understood about how to accurately model restitutive and
frictional losses in these systems �for some recent discus-
sions on this topic see, for example, Refs. 54 and 55�, �ii�
simulations with an open boundary at the striker end, as in
the experiments, pose challenges associated with modeling
the effects of rolling, and �iii� there is no simple way to
simulate the pressure felt by the surface of a force sensor at
the tapered end without making a realistic plate in the model

to simulate the wall, which in itself poses major challenges.
Nevertheless, we are hopeful that our current studies using
hydrocodes would provide some insights into modeling �i�
and �iii� above in due course.

Results from simulations for a similar system, as in the
experiment, are presented in Fig. 12 where we find that even
at higher impact velocities—but remaining within the elastic
regime—the experimentally observed trend in delivered
force is the same. For simplicity we consider the interstitial
grains and the grains in the TC to have the parameters of
Ti6Al4V rather than of Nitinol and chrome, respectively, as
in the experiment. Here, each data series measures the force
felt by the tail particle rather than that of a separate load
cell placed at the tapered end. Thus, the forces felt by the
last grain in this energy conserved system �basically a “worst
case scenario” as alluded to earlier� are quite different than in
the experiments. However, given that Nitinol is a highly en-
ergy absorptive material and that restitutive losses have been
ignored, the differences in the details of Figs. 11 and 12 are
understandable. By adding particles to a STC, one acquires
incremental amounts of shock mitigation performance. In-
stead one can take that added length and split it into several
particles of smaller size and interstitially disperse them such
as in the DTC to see dramatic improvements in impulse dis-
persion.

VII. CONCLUSIONS

Granular alignments are scalable, nonlinear dynamical
systems that can be constructed for highly effective shock
dispersion and transmission. Their properties can be tuned by
modifying the material properties and contact geometries,
material mismatch, and by varying the number of grains in
the alignment producing a very large number of �and some-
times unexpected� outcomes. Both the STC and the DTC
systems can be experimentally realized and have been
probed in some detail as reported here. We summarize below
the highlights of this paper.

We have discussed here the derivation of a formula �Eq.
�27�� that captures the ratio of the kinetic energy of the last
grain at the tapered end to the kinetic energy of the largest
grain where the impulse was incident and gives a normalized
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FIG. 11. �Color online� Delivered force for the N=5,6 STC and N=9 DTC
experiments.
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FIG. 12. �Color online� Simulations of comparative setup to those in Fig.
11.
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measure of energy dispersed in the energy conserved de-
scription of the DTC. The formula has been derived in the
hard-sphere approximation. It turns out that this formula fails
to correctly describe the energy dispersion in the DTC by
grossly overestimating energy dispersion as f , qd, and N are
increased. Interestingly, such is not the case for the corre-
sponding formula for the STC discussed in earlier work,8

where the formula furnishes a more reliable description of
energy dispersion. A hard-sphere approximation for the STC
correctly describes the functionality of N and qs for the nor-
malized energy parameter space. The softness of the poten-
tial is a factor but not a dominant one. The DTC, much to our
surprise however, cannot be described by such an approxi-
mation because shock transmission properties vary with po-
sition along the chain and with the softness of the spheres.
This particular system, consequently, cannot be treated by an
independent collision model.46 The fact that softness of the
potential plays such a strong role in these size mismatched
systems is, in retrospective, not a surprise and suggests that
size mismatched granular chains can exhibit strongly nonlin-
ear properties that may turn out to be quite different than in
the size mismatched harmonic systems.

As a note of academic interest and in considering hard
spheres, the limit of qd=0 for the DTC surprisingly reduces
to that for the STC under the exchange, f ⇔ �1−qs�. This
says that a hard-sphere chain consisting of an alternating
series of radii �where rsmall= frlarge—see Figs. 2�b�, 2�d�, and
2�f�, for example� has the kinetic energy absorption equiva-
lency of a STC of tapering qs �see Fig. 1�a�, for example�. A
result which signifies that the shock dispersion capabilities of
the STC can be easily surpassed by a chain with alternating
grain sizes, not even a real DTC. For hard materials, this
approximate result may be of value.

We have discussed the energetics of TCs and found that
STCs �Fig. 1, top� can be loosely categorized into three
groups: SW systems, shock absorption systems, and strongly
oscillating systems. It has already been reported that while
long, monodisperse chains support SWs, TCs act as shock
absorbers. It was surprising that for small chains with some
tapering, quasiperiodic and, possibly, nonlinear modal be-
havior seems to occur.

Our extensive dynamical simulations on impulse propa-
gation in the DTC has been discussed in this work. A key
result is that unlike harmonic systems where the light masses
act as the dominant energy traps,50 here the larger masses in
the TCs �and not the interstitial grains� carry the dominant
share of the energy. Thus, the interstitial particles act as the
equivalent of frictional dampers as in the Brownian motion
problems associated with the Langévin equation,56 with each
large mass in the DTC acting as a Brownian particle with the
interstitials acting as baths. We envisage that increasing the
number of interstitials could lead to better energy trapping in
the larger grains. Preliminary experiments reported herein
confirm that the DTC is a more efficient shock absorption
system than the STC and the experimental findings are quali-
tatively consistent with the simulations even though the two
systems are different. Experimental systems are dissipative
and have chrome tapered grains and Nitinol interstitials,
whereas the simulation systems are energy conserved and

have all Ti6Al4V grains. Further, the experimental system is
open at the end where the impact is initiated, whereas the
simulation system is confined within walls and that the pres-
sure felt at the wall cannot be measured in the simulation
system where a wall is not explicitly modeled.

In closing, we envision that encased STCs and DTCs can
be embedded at appropriate spacings onto certain solid ma-
trices with the system as a whole acting as a shock absorbing
layer. Such layers can find applications on armored vests to
protect combat personnel, combat vehicles, in protecting
buildings from blasts and explosions, and perhaps even in-
side Wipple or bumper shields to protect spacecraft against
ballistic shock issues arising from hypervelocity impacts of
small-sized cosmic debris. These chains may also be adapted
for use in a stacked vertical configuration to reduce the ef-
fects of impact during movement on wheel chairs when
transporting injured patients.
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